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Preliminaries

Definition

Let T be a rooted binary tree with n leaves, leaf labeled by [n].

For any S ⊆ [n], the binary restriction tree T |S is the subtree of T
obtained after deleting all the leaves that are not in S and suppressing
the internal nodes of degree 2.

The subtree T |S is rooted at the most recent common ancestor of S .

If T1 and T2 are two trees leaf labeled by X , then a subset S ⊆ X is
an agreement set of T1 and T2 if T1|S = T2|S .

A maximum agreement subtree is a subtree obtained from an
agreement set of T1 and T2 of maximal size.

MAST(T1,T2) denotes the number of leaves in a maximum
agreement subtree of T1 and T2
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Main Theorem

Theorem (M.-,Sullivant)

Let T1 and T2 be two trees generated from the uniform distribution on
rooted binary trees with n leaves with same tree shape (that is, T2 is a
random leaf relabeling of T1). Then

E [MAST(T1,T2)] = Θ(
√

n).

Lower Bound

Divide the trees into blobs
Blobs help us in constructing an agreement subtree between the two
trees

Upper Bound

Generalize a previously known result for random tree distributions that
are exchangeable but not necessarily sampling consistent
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Motivation

Rooted binary trees are used in evolutionary biology to represent the
evolution of a set of species.

The leaves denote the existing species and the internal nodes denote
the unknown ancestors.

Different tree reconstruction methods, and different datasets on the
same set of species, can lead to the reconstruction of different trees.

Important to measure the distance between different trees
constructed

The maximum agreement subtree is one of the measures of
discrepancy between trees.
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Motivation: Cospeciation

Let TH be a phylogenetic tree of host species, and TP a phylogenetic
tree of parasite species.

Host and parasites are paired, so TH and TP have same label set.

If MAST(TH ,TP) is large, reject hypothesis that TH and TP evolved
independently. i.e, largeMAST(TH ,TP) =⇒ cospeciation.

Need distribution of MAST(T1,T2) for random trees under null
hypothesis of independence to perform hypothesis test.

Hafner, M.S., Nadler, S.A. (1988) Nature 332: 258-259

Pratik Misra (NCSU) Trees and graphical models Oct 2nd, 2019 7 / 42



Previously known results

Martin and Thatte [4] conjectured that if T1 and T2 are balanced
rooted binary trees with n leaves, then MAST(T1,T2) ≥

√
n.

Simulations by Bryant, McKenzie, and Steel [2] suggest that under
the uniform distribution on the rooted binary trees with n leaves, the
expected size of MAST(T1,T2) is of the order Θ(na) with a ≈ 1/2.

The main result in this section provides evidence for Martin and
Thatte’s conjecture.
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Lower Bound - Blobs

Definition

A cherry blob is a set of leaves in T consisting of all leaves below a
vertex in the tree.

An edge blob is a nonempty set of leaves of the form C1 \ C2 where
C1 and C2 are two nonempty cherry blobs.

A blob in T is either a cherry blob or an edge blob.

Example

1 2 3 4 5
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Lower Bound - Blobs

Definition

A cherry blob is a set of leaves in T consisting of all leaves below a
vertex in the tree.

An edge blob is a nonempty set of leaves of the form C1 \ C2 where
C1 and C2 are two nonempty cherry blobs.

A blob in T is either a cherry blob or an edge blob.

Example

1 2 3 4 51 2 3 4 5

Cherry blobs: {1, 2}, {1, 2, 3}, {4, 5}
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Lower Bound - Blobs

Definition

A cherry blob is a set of leaves in T consisting of all leaves below a
vertex in the tree.

An edge blob is a nonempty set of leaves of the form C1 \ C2 where
C1 and C2 are two nonempty cherry blobs.

A blob in T is either a cherry blob or an edge blob.

Example

1 2 3 4 51 2 3

Cherry blobs: {1, 2}, {1, 2, 3}, {4, 5}
Edge blobs: {3}

Pratik Misra (NCSU) Trees and graphical models Oct 2nd, 2019 9 / 42



k-Blobification

Given an integer k and a tree T , a k-blobification of T is a collection
B of blobs of T such that,

for all distinct blobs B1,B2 ∈ B, B1 ∩ B2 = ∅,
and for all B ∈ B, k ≤ |B| ≤ 2k − 2.

Definition

The prescaffold tree is the subtree T |S where S is a set of leaves
containing one leaf from each cherry blob in B
The scaffold tree is the unlabelled version of T |S where S is a set of
leaves containing one leaf from each of the blobs in B
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Example: 2 - blobification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Prescaffold tree

Pratik Misra (NCSU) Trees and graphical models Oct 2nd, 2019 11 / 42



Example: 2 - blobification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

{1,2} {7,8} {11,12} {13,14}

Prescaffold tree

Pratik Misra (NCSU) Trees and graphical models Oct 2nd, 2019 11 / 42



Example: 2 - blobification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

{1,2} {7,8} {11,12} {13,14}

Prescaffold tree
{3,4}{5,6} {15,16}

Scaffold tree
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k-blobification using greedy algorithm

Algorithm

Input: A binary tree T and an integer k .
Output: A scaffold tree whose leaves correspond to blobs of size ≥ k and
≤ 2k − 2.

Include all the cherry blobs of minimal size in C
Each edge of the prescaffold tree has some smaller blobs hanging off
of size k − 1 or less

Group these blobs together from the bottom edges of the prescaffold
until they produce an edge blob of size between k and 2k − 2

Add the edge blobs to the set E
The algorithm stops when each edge of the scaffold tree has at most
k − 1 leaves.

The set B = C ∪ E is called the greedy k-blobification

Pratik Misra (NCSU) Trees and graphical models Oct 2nd, 2019 12 / 42



Example: greedy 3 - blobification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

{1,2,3} {11,12,13,14}

Prescaffold tree
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Example: greedy 3 - blobification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

{1,2,3} {11,12,13,14}

Prescaffold tree
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Example: greedy 3 - blobification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

{1,2,3} {11,12,13,14}

Prescaffold tree
{4,5,6} {7,8,9} {15,16,17}

Scaffold tree
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Some useful results

Lemma

If T is a rooted binary leaf-labeled tree with n leaves, then for all k ≥ 2, T
has a k-blobification with at least n

4k blobs.

Proof idea:

Applying the greedy k-blobification algorithm on T , we get ‘a’ cherry
blobs and ‘b’ edge blobs.

There are at most 2a− 1 edges in the prescaffold tree, each having at
most k − 1 leaves unassigned to any blob.

Taking the number of leaves at its most extreme gives us the lower
bound.
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Some useful results

Lemma

Let S1 and S2 be uniformly random subsets of [n], each of size at least√
n.The probability that S1 ∩ S2 6= ∅ is at least 1− e−1.

Proof idea:

The probability that S1 ∩ S2 6= ∅ is minimized when both S1 and S2

have
√

n elements.

The probability that S1 ∩ S2 = ∅ is
(n−
√
n√

n )
( n√

n)
≤ e−1.
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Lower Bound

Theorem (M.-,Sullivant)

Let T1 and T2 be two uniformly random trees on n leaves among all trees
with the same tree shape (i.e. T2 is a random leaf relabeling of T1). Then
the expected size of MAST (T1,T2) is at least

√
n(1− e−1)/4.

Proof idea:

The
√

n-blobification of T1 and T2 is denoted by B1 = {B11, . . . ,B1s}
and B2 = {B21, . . . ,B2s} and has at least

√
n/4 blobs.

Both trees have the same tree shape and so have the same scaffold
tree.

The probability that B1i ∩ B2i 6= ∅ is at least 1− e−1.

Selecting one leaf from each of B1i ∩ B2i gives us an agreement
subtree of the shape of a subtree of the scaffold tree.
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Lower Bound

Proof idea (continued):

B11 B12 B1sB1s−1

Scaffold tree of T1

B21 B22 B2sB2s−1

Scaffold tree of T2

B11 ∩ B21 B12 ∩ B22 B1s ∩ B2sB1s−1 ∩ B2s−1

An agreement subtree of T1 and T2
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Upper Bound

RB(n) : Set of all rooted binary trees with n leaves
RB(S) : Set of all rooted binary trees with leaf label set S , where S ⊆ [n]
Pn : Any probability distribution on RB(n)

Definition

A distribution on RB(n) is exchangeable if any two trees which differ only
by a permutation of leaves have the same probability.

Example

1 2 3 4 5

T1

1 5 3 4 2

T2

1 4 2 5 3

T3

If P5 is any exchangeable distribution on RB(5), then the probabilities of
all the trees would be the same, i.e, P5(T1) = P5(T2) = P5(T3).
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Upper Bound

Definition

A family of distributions on random trees is said to satisfy sampling
consistency if for all n, all s < n, all S ⊆ [n] with |S | = s, and all
t ∈ RB(S),

Ps [t] =
∑

T∈RB(n):T |S=t

Pn[T ].

Theorem (Bernstein, Ho, Long, Steel, John, Sullivant - 2015 )

Consider an exchangeable and sampling consistent distribution on rooted
binary trees. Then for any λ > e

√
2 there is a value m such that, for all

n ≥ m,
E [MAST(T1,T2)] ≤ λ

√
n

where T1,T2 are sampled from this distribution.
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Upper Bound

Since we only have a probability distribution Pn on n leaves and do
not have a family of distributions Ps for s < n, we can not talk about
sampling consistency.

Need to define some new probability distributions on RB(s) for s < n

For any s < n, and t ∈ RB(s) we define

Ps [t] =
∑

T∈RB(n):T |[s]=t

Pn[T ].

Proposition

Let Pn be an exchangeable distribution defined on RB(n). Then for any
s < n, Ps satisfies exchangeability property on RB(s).
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Upper Bound

As we have defined a family of distributions using Pn, we deduce a
strengthened version that does not require sampling consistency.

Theorem (M.-,Sullivant)

For any λ > e
√

2 there is a value m such that, for all n ≥ m,

E [MAST(T1,T2)] ≤ λ
√

n,

where T1 and T2 are sampled from any exchangeable distribution on
RB(n).

Proof idea:

Proved exactly the way as Theorem 4.3 in [1]

Equalities which followed from sampling consistency now follow from
the definition of Ps and the fact that Ps is also exchangeable.
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Upper bound

As the uniform distribution on trees with the same shape is exchangeable,
we have the following Corollary:

Corollary

Let T1 and T2 be generated from the uniform distribution on rooted
binary trees with n leaves with same tree shape (that is, T2 is a random
leaf relabeling of T1). Then for any λ > e

√
2 there is a value m such that,

for all n ≥ m,
E [MAST(T1,T2)] ≤ λ

√
n.
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Simulations with Blobification

The blobification idea has the potential to improve the lower bounds
on the expected size of the MAST in other contexts

Construct the scaffold tree as a comb tree

An agreement subtree could be obtained by comparing blobs matched
along the path from the root to the deepest leaf in each scaffold tree

Apply this technique on uniformly randomly trees

The current best lower bound for the expected size of the MAST for
two uniformly random trees on n leaves is Ω(n1/8) [1]
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Simulations
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Figure: Log-log plot of the simulated expected size of the greedy comb scaffold

The greedy comb scaffold algorithm applied to uniformly random
binary trees with k =

√
n on 2n leaves for n = 4, . . . , 11, with 1000

samples for each value of n

Slope of the line of best fit is approximately 0.466

A strategy based on blobification could yield an estimate of Ω(n0.466)
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Summary

The lower bound of the expected size of MAST of two uniformly
random trees on n leaves is

√
n(1− e−1)/4, which is obtained using√

n − blobification

The upper bound of the expected size of MAST(T1,T2) is λ
√

n,
where λ > e

√
2 and T1,T2 are sampled from any exchangeable

distribution on RB(n)

The idea of blobification can be used to improve the lower bound of
the expected size of MAST
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Vanishing ideal of a Gaussian Graphical model

Preliminaries:

Definition

Any positive definite n × n matrix Σ can be seen as the covariance
matrix of a multivariate normal distribution in Rn.

The inverse matrix K = Σ−1 is called the concentration matrix of
the distribution.

Statistical models where K can be written as a linear combination of
some fixed linearly independent symmetric matrices K1,K2, ...,Kd are
called linear concentration models.

Let Sn denote the vector space of real symmetric matrices and let L
be a linear subspace of Sn generated by K1,K2, ...,Kd . The set L−1 is
defined as

L−1 = {Σ ∈ Sn : Σ−1 ∈ L}.
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Gaussian Graphical models

Undirected Gaussian graphical model is obtained when L is defined by
the vanishing of some off-diagonal entries of K .

Fix a graph G = ([n],E ) with vertex set [n] = {1, 2, ..., n} and edge
set E , which is assumed to contain all self loops.

The subspace L is generated by the set {Kij |(i , j) ∈ E} of matrices
Kij with 1-entry at the (i , j)th and (j , i)th position and 0 in all other
positions.

The homogeneous prime ideal of all the polynomials in
R[Σ] = R[σ11, σ12, ..., σnn] that vanish on L−1 is denoted by PG .
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Computing the vanishing ideal

Problem

For a given graph G , find a generating set of the ideal PG .

One way to compute PG is to eliminate the entries of an indeterminate
symmetric n × n matrix K from the following system of equations:

Σ · K = Idn, K ∈ L,

where Idn is the n × n identity matrix.

Example

G =

1 3

2

4
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Computing the vanishing ideal

Example (Continued)

Let G = ([4],E ). The matrices Σ and K for this graph are:

Σ =


σ11 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44

 ,K =


k11 k12 k13 0
k12 k22 k23 0
k13 k23 k33 k34

0 0 k34 k44

 , 1 3

2

4
G

The ideal PG can be calculated by using the equation Σ · K = Id4.

PG = 〈Σ ·K − I 〉 = 〈σ11k11 +σ12k12 +σ13k13− 1, ..., σ34k34 +σ44k44− 1〉.

Eliminating the kij variables, we get

PG = 〈σ13σ34 − σ14σ33, σ23σ34 − σ24σ33, σ14σ23 − σ13σ24〉.
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Separation and clique sums

Definition

Let G = (V ,E ) be a graph and let A,B, and C be disjoint subsets of
the vertex set of G with A ∪ B ∪ C = V .

The set C separates A and B if for any a ∈ A and b ∈ B, any path
from a to b passes through a vertex in C .

The set C is called a clique of G if the subgraph induced by C is a
complete graph.

The graph G is a c-clique sum of smaller graphs G1 and G2 if there
exists a partition (A,B,C ) of its vertex set such that

i) C is a clique with |C | = c ,
ii) C separates A and B,
iii) G1 and G2 are the subgraphs induced by A ∪ C and B ∪ C respectively.
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Separation and clique sums

Example

1

2

3

4 5
G =

In the graph G , let A = {1}, B = {4, 5} and C = {2, 3}.
As every path from {1} to {4, 5} passes through {2, 3}, C separates
A and B.

C is a clique as the subgraph induced by C is a complete graph.

G is a 2-clique sum of G1 (blue) and G2 (red), where G1 and G2 are
the subgraphs induced by {1, 2, 3} and {2, 3, 4, 5} respectively.
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Conditional independence

Proposition

Let X = (X1,X2, ...,Xn) be a Gaussian random vector. If A,B,C ⊆ [n] are
pairwise disjoint subsets, then XA is conditionally independent of XB given
XC (i.e A |= B|C ) if and only if the submatrix ΣA∪C ,B∪C of the covariance
matrix Σ has rank |C |.

The Gaussian conditional independence ideal for the conditional
independence statement A |= B|C is given by

JA |= B|C = 〈(|C |+ 1)× (|C |+ 1) minors of ΣA∪C ,B∪C 〉.

Let G be an undirected graph and (A,B,C ) be a partition with C
separating A from B.

The conditional independence statement A |= B|C holds for all
multivariate normal distributions where the covariance matrix Σ is
obtained from G (by the global Markov property).
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Conditional independence ideal

The conditional independence ideal for a graph G is defined by

CIG =
∑

A |= B|C holds for G

JA |= B|C .

In terms of a graph G , the conditional independence ideal is the set of
determinantal constraints obtained from the zeros of the
concentration matrix (non edges of the graph).

Proposition

Let (A,B,C ) be any separating partition of G . Then the rank of the
submatrix ΣA∪C ,B∪C of the covariance matrix Σ is |C | and hence the
generators of CIG vanish on the matrices in L−1. So for any given graph
G ,

CIG ⊆ PG .
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Conditional independence ideal

Question

Is CIG = PG for all graphs ? No!

Example

1

2

3

4

5

6

7
G =

Let (A,B,C ) = ({1, 2, 3}, {5, 6, 7}, {4}) and let G1 and G2 be the
subgraphs induced by A ∪ C and B ∪ C respectively. Then

PG = CIG + 〈m〉 6= CIG ,

where m is a homogeneous polynomial of degree 4 which cannot be
obtained from any determinantal constraints given by PG1 ,PG2 or the
2× 2 minors of ΣA∪C ,B∪C .
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1-clique sums

Question

For which class of graphs is PG = CIG ?

Definition

A graph G is called a 1-clique sum of complete graphs if there exists a
partition (A,B,C ) of its vertex set such that

i) |C | = 1,

ii) C separates A and B,

iii) the subgraphs induced by A∪ C and B ∪ C are either complete graphs
or 1-clique sum of complete graphs.

Definition

A vertex c is called a central vertex if there exists a 1-clique partition
(A,B,C ) with C = {c}.
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1-clique sums

Example

1

2

3

4

5 6

G =

Let G = ([6],E ). Consider the partition (A,B,C ) where A = {1, 2},
B = {4, 5, 6} and C = {3}.

The subgraph induced by A ∪ C is a complete graph.

The subgraph induced by B ∪ C is a 1-clique sum of complete graphs
(with (A1,B1,C1) = ({3, 4}, {6}, {5})).

Similarly, ({1, 2, 3, 4}, {6}, {5}) is also a 1-clique partition.

3 and 5 are the central vertices of the graph.
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The Conjecture

Conjecture (Sturmfels, Uhler - 2009)

The prime ideal PG of an undirected Gaussian graphical model is
generated in degree ≤ 2 if and only if each connected component of the
graph G is a 1-clique sum of complete graphs. In this case, PG has a
Gröbner basis consisting of entries of Σ and 2× 2 minors of Σ.

Aim: To show that CIG is equal to the vanishing ideal PG when G is a
1-clique sum of complete graphs.
In this case, the conditional independence ideal can be written as

CIG = 〈
⋃

(A,B,C)∈C1(G)

2× 2 minors of ΣA∪C ,B∪C 〉,

where C1(G ) denotes the set of all 1-clique partitions of G .
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Some useful results

Proposition

If G is a 1-clique sum of complete graphs, then there exists a unique
shortest path between any two vertices i and j in G .

We denote the unique shortest path between i and j by i ↔ j .

If (A,B,C ) is a 1-clique partition of G with C = {c}, and if
i ∈ A, j ∈ B then i ↔ j decomposes into i ↔ c ∪ c ↔ j .

Let F = {fij : 1 ≤ i ≤ j ≤ n} ⊆ R[k11, k12, ..., knn], where fij is det(K )
times the (i , j)th coordinate of K−1.

Shortest path monomial : Each fij has the monomial∏
(i ′,j ′)∈i↔j

ki ′j ′
∏

t /∈i↔j

ktt

as one of its terms.
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Some useful results

Example

1

2

3

4

5 6

G =

For this graph G , the polynomial f12 has the monomial k12k33k44k55k66 as
one of its terms.
Similarly, f14 has the monomial k13k34k22k55k66 as one of its terms.
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Final result

Theorem (M.-,Sullivant)

The conjecture given by Sturmfels and Uhler is true.

Proof Idea:

Existence of the unique shortest path allows us to define the shortest
path map ψ

kerψ = CIG

Construct a partial term order on R[F ] using the shortest path
monomial

Using this term order, define the initial term map φ

kerψ = ker φ

F forms a SAGBI (Subalgebra Analogue to Gröbner Basis for Ideals)
basis of R[F ]
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Future Projects

Question

Let G be a 1-clique sum of two smaller graphs G1 and G2 attached at the
vertex {c}. Is the following relation true:

PG = 〈PG1 + PG2 + 2× 2 minors of ΣA∪C ,B∪C 〉 : 〈σcc〉∞

Computations in Macaulay2 suggests that this result might be true as
it holds for various examples.

Question

Can we find a generating set of PG for directed acyclic graphs (DAGs)
using similar techniques (especially for directed acyclic analogue of
1-clique sum of complete graphs )?

1

2

3

4

5
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